edexcel 쁯

Mark Scheme (Results)

Summer 2016

Pearson Edexcel GCE in Chemistry (6CH05) Paper 01
General Principles of Chemistry II

Abstract

Edexcel and BTEC Qualifications Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere
Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 46661_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2016

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication
Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Reject	Mark
1	B		(1)

Question Number	Correct Answer	Reject	Mark
2	C		(1)

Question Number	Correct Answer	Reject	Mark
3	A		(1)

Question Number	Correct Answer	Reject	Mark
4	D		(1)

Question Number	Correct Answer	Reject	Mark
5	B		(1)

Question Number	Correct Answer	Reject	Mark
6	D		(1)

Question Number	Correct Answer	Reject	Mark
7	B		(1)

Question Number	Correct Answer	Reject	Mark
8	D		(1)

Question Number	Correct Answer	Reject	Mark
9	C		(1)

Question Number	Correct Answer	Reject	Mark
10	C		(1)

Question Number	Correct Answer	Reject	Mark
11 a	C		(1)

Question Number	Correct Answer	Reject	Mark
11 b	D		(1)

Question Number	Correct Answer	Reject	Mark
12	B		(1)

Question Number	Correct Answer	Reject	Mark
13	D		(1)

Question Number	Correct Answer	Reject	Mark
14	B		(1)

Question Number	Correct Answer	Reject	Mark
15	C		(1)

Question Number	Correct Answer	Reject	Mark
16	B		(1)

Question Number	Correct Answer	Reject	Mark
17	A		(1)

Question	Correct Answer	Reject	Mark
Number	D		(1)
18	D		

Question Number	Correct Answer	Reject	Mark
19	A		(1)

Section B

Question Number	Acceptable Answers	Reject	Mark	
$20(\mathrm{a})$	$\mathrm{V}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{V}(\mathrm{s})$	$-1.18(\mathrm{~V})$		(1)
	$\mathrm{V}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightleftharpoons \mathrm{V}^{2+}(\mathrm{aq})$	-0.26 $(\mathrm{~V})$		
	Both correct			

Question Number	Acceptable Answers	Reject	Mark
20(b)(i)	A (salt bridge containing saturated solution of) potassium nitrate / KNO_{3} ALLOW potassium chloride / KCl / sodium chloride / $\mathrm{NaCl} /$ sodium nitrate / NaNO_{3} B (electrode) platinum /Pt C (solution containing) vanadium(II) and vanadium(III) ions / V^{2+} and V^{3+} ions ALLOW compounds of V^{2+} and V^{3+} IGNORE any concentrations	KI / NaI vanadium	(3)

Question Number	Acceptable Answers	Reject	Mark
20(b) (ii)	$298 \mathrm{~K} / 25^{\circ} \mathrm{C}$ (temperature) 1 atm / $100 \mathrm{kPa} / 101 \mathrm{kPa} / 1 \mathrm{bar}$ (pressure) ALLOW atmospheric pressure IGNORE hydrogen / gas $1 \mathrm{~mol} \mathrm{dm}^{-3}$ (all concentrations) ALLOW this if written in (b)(i) ALLOW '1 molar' / 1M / equal concentrations of V^{2+} and $\mathrm{V}^{3+} /$ vanadium(II) and vanadium(III) ions All 3 correct Any 2 correct	$298^{\circ} \mathrm{K} / 273 \mathrm{~K}$ / $0^{\circ} \mathrm{C}$ / room temperature wrong pressure units eg 100 Pa wrong concentration units eg 1 mol	(2)

Question Number	Acceptable Answers	Reject	Mark
20(c)	First mark - stand alone vanadium(IV) / V(IV) / (+)4 (oxidation state) ALLOW V ${ }^{4+}$ IGNORE VO²+ Second mark $E^{c_{c e l l}}(=1.00-0.54)$ $\begin{equation*} =(+) 0.46(\mathrm{~V}) \tag{1} \end{equation*}$ Third mark $\begin{equation*} 2 \mathrm{VO}_{2}^{+}+4 \mathrm{H}^{+}+2 \mathrm{I}^{-} \rightarrow 2 \mathrm{VO}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2} \tag{1} \end{equation*}$ ALLOW multiples $/ \rightleftharpoons$ IGNORE any working before this equation Fourth mark For the reduction of V (IV) to V (III) $E_{\text {cell }}^{\ominus}(=0.34-0.54)=-0.2(0)(\mathrm{V})$ OR $E^{\theta}{ }_{\text {cell }}$ for the reaction between VO^{2+} and I^{-}is negative (so V (IV) is not reduced to V (III)) OR $\mathrm{I}_{2} / \mathrm{I}^{-}$electrode potential / SEP / E^{\ominus} value is more positive than the $\mathrm{VO}^{2+} / \mathrm{V}^{3+}$ value (so V (IV) is not reduced to $\mathrm{V}(\mathrm{III})$) OR $\mathrm{VO}^{2+} / \mathrm{V}^{3+}$ electrode potential / SEP / E^{θ} value is less positive than the $\mathrm{I}_{2} / \mathrm{I}^{-}$value (so V (IV) is not reduced to V (III)) IGNORE equation for VO^{2+} and I^{-} Fifth mark - stand alone $E^{\ominus}{ }_{c e l l}$ is positive / greater than 0 so (first) reaction is feasible and $E^{\ominus}{ }_{c e l l}$ is negative / less than 0 so (second) reaction is not feasible ALLOW spontaneous for feasible (1) IGNORE incorrect values provided the signs are	Mention of iodide ions reduced Incorrect value	(5)

Total for Question $20=11$ marks

Question Number	Acceptable Answers	Reject	Mark
21 (a)(i)	2-aminopropanoic acid has peak ratio 3:2:1:1 (in any order)	They have different numbers of peaks negates 1 mark only	(2)
	3-aminopropanoic acid has peak ratio 2:2:2:1 (in any order)		
	If no other mark is awarded, allow for 1 mark: 1 stated difference between the peak ratios e.g. only 2-aminopropanoic acid has a peak with area / height 3		
IGNORE splitting patterns / chemical shift values even if incorrect			

Question Number	Acceptable Answers	Reject	Mark
21(a)(ii)	Not chiral, as there is no carbon atom with 4 different atoms or groups attached	Species /molecules	(1)
	ALLOW Not chiral, as there is no asymmetric carbon atom / there is a plane of symmetry in the molecule / there are two hydrogens attached to (both) carbons	IGNORE there is no chiral carbon atom / does not have any enantiomers	IGNORE Not chiral, as mirror image is superimposable / it does not have a non-superimposable mirror image

Question Number	Acceptable Answers	Reject	Mark
21(a)(iii)	ALLOW skeletal / displayed / structural formulae or any combination of these ALLOW $\mathrm{CO}_{2} \mathrm{H}$ for $\mathrm{COOH} / \mathrm{C}_{2} \mathrm{H}_{4}$ or $\left(\mathrm{CH}_{2}\right)_{2}$ for $\mathrm{CH}_{2} \mathrm{CH}_{2}$ $\begin{align*} & { }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow{ }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \\ & \mathrm{ALLOW} \\ & \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{H}^{+} \rightarrow{ }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH} \\ & \\ & { }^{+} \mathrm{H}_{3} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{OH}^{-} \rightarrow \\ & \xrightarrow{\mathrm{H}}{ }_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \\ & \mathrm{ALLOW} \\ & \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \tag{1}\\ & \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \end{align*}$ ALLOW (1) for just 2 correct organic products ALLOW (1) for 2 correct equations using 2-aminopropanoic acid		(2)

Question Number	Acceptable Answers	Reject	Mark
21(a)(iv)	 Extension bonds must be present and can be solid or dotted ALLOW $\left(\mathrm{CH}_{2}\right)_{2} / \mathrm{C}_{2} \mathrm{H}_{4}$ ALLOW structural / skeletal / displayed formulae or any combination of these e.g. $-\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CONH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}-$ IGNORE brackets / n	Use of 2aminopropanoic acid 1 repeat unit /more than 2 repeat units	(1)

Question Number	Acceptable Answers	Reject	Mark
21(b)(i)	sodium nitrite / sodium nitrate(III) / NaNO_{2} and hydrochloric acid / $\mathrm{HCl} /$ sulfuric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ ALLOW nitrous acid / HNO_{2} (and hydrochloric acid / $\mathrm{HCl})$ IGNORE concentration of hydrochloric acid at $5^{\circ} \mathrm{C} /$ between 0 and $10^{\circ} \mathrm{C}$. Conditional on correct or 'near miss' reagents ALLOW any temperature or range of temperatures within range /ice bath / less than $5 / 10^{\circ} \mathrm{C}$	Just sodium nitrate Incorrect formula with correct name or vice versa Conc $\mathrm{H}_{2} \mathrm{SO}_{4}$	(2)

Question Number	Acceptable Answers	Reject	Mark
21 (b) (ii)	Covalent bond between Na and O	(1)	

Question Number	Acceptable Answers	Reject	Mark
$21(\mathrm{~b})(\mathrm{iii})$	Restricted rotation around N=N	the molecule does not rotate	(1)
	ALLOW no rotation ALLOW restricted / no rotation around the nitrogen / azo bridge limited rotation	restricted / no rotation around C=C	

Question Number	Acceptable Answers	Reject	Mark
21 (b) (iv)	Dissolve it in the minimum amount of hot ethanol /solvent	Add ethanol /solvent then heat	(4)
	Filter whilst still hot (to remove the insoluble impurities)	To remove soluble impurities	
	ALLOW this mark if hot is omitted and it follows M1 and is followed by cool (1)	Cool / use an ice bath (and allow crystals to form)	(1)
Filter and dry the crystals To remove insoluble impurities ALLOW any method of filtration / any suitable method of drying e.g. on filter paper / leave to dry / in a (warm) oven / put in a desiccator	Use of an anhydrous salt for drying unless in a desiccator		
IGNORE wash with ethanol /water			

Question Number	Acceptable Answers	Reject	Mark
$21(\mathrm{~b})(\mathrm{v})$	Compare the melting temperature with Data Book / known / literature value OR It has a sharp melting temperature OR Melting temperature is $\pm 2^{\circ} \mathrm{C}$ of the Data Book / known / literature value	boiling temperature	(1)
	OR (Thin layer) chromatography has a single (yellow) spot		
IGNORE references to spectroscopy / HPLC / GC			

Question Number	Acceptable Answers	Reject	Mark
21(c)	IGNORE conditions unless in Reject column / mechanisms / equations ALLOW names or formulae for reagents but both must be correct if given First step Potassium / sodium dichromate((VI)) $/ \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ / $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ and (dilute) sulfuric acid / $\mathrm{H}^{+} /$ acidified ALLOW $\mathrm{MnO}_{4}^{-} / \mathrm{H}^{+}$ First intermediate - stand alone ALLOW $-\mathrm{CO}_{2} \mathrm{H} /$ displayed formula IGNORE formation of an aldehyde Second step - from benzoic acid phosphorus(V) chloride / PCl_{5} / phosphorus(III) chloride / $\mathrm{PCl}_{3} /$ thionyl chloride $/ \mathrm{SOCl}_{2}$ Second intermediate - stand alone ALLOW COCl displayed Third step - from benzoyl chloride (concentrated) ammonia Alternative route for last 3 marks Second step - from benzoic acid ammonium carbonate /ammonia Second intermediate ALLOW COO- displayed / COONH_{4} with no charges Third step - from ammonium benzoate Heat OR phosphorus(V) oxide $/ \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{P}_{4} \mathrm{O}_{10}$	hydrochloric acid / HCl / concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ just `benzoic acid' \\ hydrochloric acid/ HCl \\ Just `benzoyl chloride' Ethanol Additional reagents	(5)

Total for Question 21 = 20 marks

Question Number	Acceptable Answers	Reject	Mark
22(a)	First mark Electronic configurations: Cu^{2+} is [Ar] $3 \mathrm{~d}^{9}$ and Zn^{2+} is [Ar] $3 \mathrm{~d}^{10}$ IGNORE $4 \mathrm{~s}^{\circ}$ / full electronic configuration of Ar Second mark If both EC are correct: EITHER Copper (is a transition element because it) forms a (stable) ion with an incompletely / partially filled d-subshell / orbital(s) ALLOW forms an ion with unpaired d electron(s) OR Zinc only forms an ion with a full d-subshell / all d orbitals full If one or both EC are incorrect: Copper (is a transition element because it) forms a (stable) ion with an incompletely filled d-subshell / orbital(s) and zinc only forms an ion with a full d-subshell / all d orbitals full	d shell sub- shell / orbital other than 3d	(2)

Question Number	Acceptable Answers	Reject	Mark
22(b)	$\begin{align*} & \mathrm{CuCl}+\mathrm{AgCl} \rightleftharpoons \mathrm{CuCl}_{2}+\mathrm{Ag} \\ & \mathrm{OR} \\ & \mathrm{Cu}^{+}+\mathrm{Ag}^{+} \rightleftharpoons \mathrm{Cu}^{2+}+\mathrm{Ag} \\ & \mathrm{OR} \\ & \mathrm{CuCl}+\mathrm{Ag}^{+} \rightleftharpoons \mathrm{Cu}^{2+}+\mathrm{Ag}+\mathrm{Cl}^{-} \tag{1} \end{align*}$ ALLOW \rightarrow IGNORE state symbols / half-equations Stand alone mark (Equilibrium moves to the right in sunlight) producing silver IGNORE copper(II) compounds	Copper (metal)/ copper(I) compounds	(2)

Question Number	Acceptable Answers	Reject	Mark
22(c)	Shape - square planar ALLOW bonds with or without arrows ALLOW Cls joined by lines in a square ALLOW tetrahedral shape IGNORE brackets and/or charges Bonding - dative (covalent) /co-ordinate ALLOW shown on diagram as arrows from Cl to $\mathrm{Cu}(1)$		(2)

Question Number	Acceptable Answers	Rej ect	Mark
22(d)(i)	```\[\mathrm{Cu}+\mathrm{CuCl}_{2}+2 \mathrm{HCl} \rightarrow 2\left[\mathrm{CuCl}_{2}\right]^{-}+2 \mathrm{H}^{+} \] OR \[\mathrm{Cu}+\mathrm{Cu}^{2+}+4 \mathrm{Cl}^{-} \rightarrow 2\left[\mathrm{CuCl}_{2}\right]^{-} \] OR \[\mathrm{Cu}+\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow 2\left[\mathrm{CuCl}_{2}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O} \] OR OR \[\mathrm{Cu}+\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+4 \mathrm{HCl} \rightarrow 2\left[\mathrm{CuCl}_{2}\right]^{-}+6 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{H}^{+} \] \[\mathrm{Cu}+\mathrm{CuCl}_{2}+2 \mathrm{Cl}^{-} \rightarrow 2\left[\mathrm{CuCl}_{2}\right]^{-} \]``` IGNORE state symbols, even if incorrect / missing brackets		(1)

Question Number	Acceptable Answers	Reject	Mark
22(d) (ii)	Disproportionation is the simultaneous oxidation and reduction of a (single) species / atom / element / ion (to form 2 different oxidation (1) states) IGNORE reactant / substance / molecule / compound Not disproportionation because two different species (of copper) are oxidised and reduced OR Not disproportionation as (start with 2 different oxidation states of copper and) only produces 1 oxidation state ALLOW Disproportionation is the other way around / this is reverse disproportionation / comproportionation	(2)	

Question Number	Acceptable Answers	Reject	Mark
$22(\mathrm{~d})$ (iii)	The d-subshell is full / d ${ }^{10}$ OR all d orbitals are full ALLOW d shell is full d-d transitions cannot take place OR (1) Electrons cannot move between d orbitals OR Electrons cannot be promoted / excited to higher d orbital(s) IGNORE just 'movement to different energy	d orbital any number other than 3(d)	(2) d-subshell / orbitals do not split

Question Number	Acceptable Answers	Reject	Mark
22(e)(i)	State symbols are required IGNORE missing square brackets $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})$ OR $\begin{array}{r} {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow} \\ \mathrm{Cu}(\mathrm{OH})_{2}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \end{array}$ OR $\begin{aligned} & {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \rightarrow} \\ & \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \end{aligned}$ OR $\begin{array}{r} \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \\ \mathrm{Cu}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{~s}) \end{array}$ ALLOW equations with $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}(\mathrm{aq})$	Equations with $\mathrm{NaOH} / \mathrm{Na}^{+} /$ $\mathrm{SO}_{4}{ }^{2-}$ ions	(1)

Question Number	Acceptable Answers	Reject	Mark
$22($ e)(ii)	Ligand exchange / ligand substitution / ligand replacement	Acid/base reaction Deprotonation	(1)

Question Number	Acceptable Answers	Reject	Mark
22(f)(i)	Ligand has 2 atoms that can form (co-ordinate / dative covalent) bonds (to the metal ion)	2 ligands attached to the ion	(1)
	ALLOW Has 2 lone pairs that form (co-ordinate / dative covalent) bonds	Just 'has 2 lone bond pairs'	ALLOW Has 2 lone pairs that it donates (to the metal ion)
ALLOW Forms 2 (co-ordinate / dative covalent) bonds (to the metal ion)			

Question Number	Acceptable Answers	Reject	Mark
22(f)(ii)	First mark (there are) more particles / moles / species on the right (of the equation) OR (there is an increase from) 4 particles / moles / species on the left of the equation to 7 on the right Second mark (so) $\Delta S_{\text {system }}$ increases / is positive (and the reaction is thermodynamically feasible) ALLOW $\Delta S_{\text {total }}$ is positive / increasing (and the reaction is thermodynamically feasible) ALLOW (there is) an increase in entropy (and the reaction is thermodynamically feasible) IGNORE Just 'disorder increases'	Molecules / atoms Incorrect numbers of particles / moles	(2)

Total for Question 22 = 16 marks

Section C

Question Number	Acceptable Answers	Reject	Mark
23 (a)	(acid) amide / N-substituted amide / N- substituted ethanamide / secondary (substituted) amide / substituted amide	Amine / amino acid / carboxylic acid / acid / ester	(1)
IGNORE benzene / arene / phenyl			

Question Number	Acceptable Answers	Reject	Mark
$23($ b)(i)	$\left(\mathrm{HNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{NO}_{3}{ }^{+}+\mathrm{HSO}_{4}^{-}\right)$ base/ acid/conjugate conjugate acid/ base/ acid 1 base 1 acid $2 \quad$base 2 ALLOW any labels that connect the correct acid/base pairs, including linking lines		(1)

| Question |
| :--- | :--- | :--- | :--- |
| Number | Acceptable Answers

Question Number	Acceptable Answers	Reject	Mark
23 (b)(iii)	Lone pair of electrons on oxygen (may be shown on a diagram) and EITHER overlaps with pi cloud /delocalised electrons / delocalised system	(2)	
	OR Feeds into / donates into / interacts with (benzene) ring /delocalised electrons / delocalised system	ALLOW Increases the electron density of the (benzene) ring (1)	Ring is
more			
electro-			
(Increased electron density) makes the ring more			
susceptible to electrophilic attack			
ALLOW			
phenol is a better nucleophile			

Question Number	Acceptable Answers	Reject	Mark
23(b)(iv)	Reduction	Hydrogenation	(1)
	ALLOW redox		

Question Number	Acceptable Answers	Reject	Mark
$23($ b)(v)	ethanoyl chloride $/ \mathrm{CH}_{3} \mathrm{COCl} /$ ethanoic anhydride $/\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ If name and formula are given, both must be correct ALLOW displayed / skeletal formulae IGNORE acid chloride / acid anhydride	ethanoic acid / $\mathrm{CH}_{3} \mathrm{COOH}$	(1)

Question Number	Acceptable Answers	Reject	Mark
23 (b)(vi)	Hydrogen bonds present in both compounds ALLOW if this is clearly implied e.g. 4-nitrophenol forms more hydrogen bonds than 2-nitrophenol (1)		(2)
	4-nitrophenol forms intermolecular hydrogen bonds and 2-nitrophenol forms intramolecular hydrogen bonds (so less intermolecular hydrogen bonds) ALLOW this shown in diagrams / a clear description (1) IGNORE references to other intermolecular forces		

Question Number	Acceptable Answers	Reject	Mark
$23(\mathrm{c})(\mathrm{i})$		electrons left in equation	(1)
	$\mathrm{HOC}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}+2 \mathrm{Ce}^{4+} \rightarrow \mathrm{OC}_{6} \mathrm{H}_{4} \mathrm{NH}+2 \mathrm{H}^{+}+2 \mathrm{Ce}^{3+}$		

Question Number	Acceptable Answers	Reject	Mark
23(c) (ii)	95.1(3)\% with or without working scores (5) $\mathrm{mol} \mathrm{Ce}{ }^{4+}$ used $=12.60 \times 0.100 / 1000$ $\begin{equation*} =1.260 \times 10^{-3} \tag{1} \end{equation*}$ mol 4-aminophenol in $20.0 \mathrm{~cm}^{3}$ $\begin{align*} & =1.260 \times 10^{-3} / 2 \\ & =6.30 \times 10^{-4} \tag{1} \end{align*}$ TE on mole ratio in (c)(i) mol 4-aminophenol/paracetamol in $100 \mathrm{~cm}^{3}$ $\begin{align*} & =6.30 \times 10^{-4} \times 5 \\ & =3.15 \times 10^{-3} \tag{1} \end{align*}$ TE on mol in $20.0 \mathrm{~cm}^{3}$ mass paracetamol in $100 \mathrm{~cm}^{3}$ $\begin{align*} & =3.15 \times 10^{-3} \times 151 \\ & =0.47565(\mathrm{~g}) \tag{1} \end{align*}$ TE from mol in $100 \mathrm{~cm}^{3}$ $\begin{aligned} \% \text { paracetamol } & =\frac{0.47565}{0.500} \times 100 \\ & =95.1(3)(\%) \end{aligned}$ TE from mass paracetamol in $100 \mathrm{~cm}^{3}$ as long as answer is less than 100% IGNORE SF except 1SF ALLOW alternative methods	Incorrect units once only	(5)

Question Number	Acceptable Answers	Reject	Mark
$23(\mathrm{~d})(\mathrm{i})$		Circle covering additional carbon atoms	(1)
		More than one carbon atom indicated	

Question Number	Acceptable Answers	Reject	Mark
23(d)(ii)	Mark independently		(2)
	First mark		
	Any one problem from:		
	Producing a single enantiomer / isomer gives low atom economy / gives (a lot of / 50%) waste / low yield (of required isomer)		
	OR Separating the two enantiomers / isomers is difficult / expensive / uses (a lot of) energy (1)		
	IGNORE just 'a racemic mixture is formed' / unwanted isomer may be harmful / toxic / have side effects		
	Second mark		
	Any one solution from:		
	Produce a single isomer by using enzymes / bacteria / a biological catalyst / a chiral catalyst / chiral synthesis / asymmetric synthesis / stereospecific synthesis	Combinatorial chemistry Passing reactants over reagents on polymer supports	
	OR Use a (natural) chiral molecule as a starting material		
	ALLOW		
	Use of $S_{N} 2$ instead of $S_{N} 1$		
	IGNORE remove harmful /unwanted products		

Question Number	Acceptable Answers	Reject	Mark
$23(\mathrm{e})$	Any one reason from: (The three step synthesis will) Increase atom economy / reduce waste OR Increase / give a higher (percentage) yield OR Use less energy / fuel ALLOW reverse argument for the six step synthesis IGNORE references to costs / raw materials / efficiency / pollution	(1)	

Question Number	Acceptable Answers	Reject	Mark
23(f)	 OR ALLOW carboxylate ion shown as ALLOW Anion as shown and the cation with two $\mathrm{NH}_{3}{ }^{+}$ groups / cation shown as a protonated zwitterion Anion (1) Cation (1)	Charges outside brackets, once only, if both ions are correct and there are no charges inside the bracket	(2)

Total for Section C = 23 marks

